DuPont™ Viton®
Introduction to Our Next Generation DiPolymers (NGDP)

Patrick Paglia
Outline

Background: Why Develop the Next Generation Dipolymer (NGDP) Product Line

NGDP Product Line

NGDP for Increased Productivity

NGDP for Improved Part Performance

Summary
Technology Evolution of Viton®

APA delivered breakthrough technology in specialty fluoroelastomers in 2002.

NGDP balances the Viton® portfolio by advancing the state of the art in dipolymer fluoroelastomers.
Why Develop A Next Generation Dipolymer Product Line?

Key Objective:
Create A Superior Fluoroelastomer Dipolymer (66%F) Offering

• Improved flow in injection and transfer molding
• Improved compression set resistance
• Fast cure rate

Resulting In

• Increased productivity
• Improved final part performance
NGDP - Polymer Line

• 20 ML VTX-7619 & 70 ML VTX-7620 gum polymer sheets
 • Bisphenol curable

 • VTX-7619 has (ML@121°C) of 20
 • VTX-7619 useful for injection and transfer molding

 • VTX-7620 has (ML@121°C) of 70
 • VTX-7620 targeted at compression molding

• Can be compounded with VC50/VC30
• Can be blended with precompounds (PCs)
• Can be blended to make polymers ranging from 20ML to 70ML
NGDP - Precompound Line

- precompounds forming NGDP triangle
 - 60 Mooney – standard cure rate – VTR-7621
 - 20 Mooney – standard cure rate – VTR-7622
 - 20 Mooney – slower cure rate – VTX-7624

- Other precompound developed
 - 35 Mooney – precompound (for bonded parts) – VTX-7625
NGDP – Compound Data with Gums VTX-7619 & VTX-7620

<table>
<thead>
<tr>
<th>E113064 - Compound #</th>
<th>A72-06</th>
<th>A72-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTX-7620 sheet</td>
<td>97.3</td>
<td>-</td>
</tr>
<tr>
<td>VTX-7619 sheet</td>
<td>-</td>
<td>97.3</td>
</tr>
<tr>
<td>VC50</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>VC30</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>ELASTOMAG 170</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N990</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Ca(OH)2 HP-XL</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Mooney Scorch @ 121°C
Minimum: 56, 20
5 Pt. Rise (min): 23.4, >30
10 Pt. Rise (min): >30, -

MDR @ 177°C, 0.5 Degree Arc, 100 Range, 6 Minute Clock
M-L (dNm): 2.6, 0.6
ts-2 (min): 1.0, 1.2
t'50 (min): 1.3, 1.3
t'90 (min): 1.9, 2.1
t'95 (min): 2.3, 2.6
M-H (dNm): 32.7, 26.7

In typical compounds, NGDP gums yield fast, square cure curves while retaining excellent scorch safety.
Product Offer - NGDP Precompound “Triangle”

Benefits:
- Blending options:
 - to vary compound viscosity
 - to vary compound ts2 & tc90 cure speed
- Increased compounding flexibility
- Reduced inventory levels
Product Offer - NGDP Precompound “Triangle”:
Increased Compounding Flexibility with Precompounds and Gums

Blends can be made to modify viscosity, cure speed or both. Blends can be done with VTR-7619 and 7620 as well.
Product Construction with NGDP Precompound Triangle

<table>
<thead>
<tr>
<th>Compound #</th>
<th>Descr</th>
<th>A401C control</th>
<th>NGDP blend like A401C</th>
<th>VTR-9160</th>
<th>NGDP blend like VTR-9160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viton® A401C</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VTR-9190</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VTX-7521 (NGDP)</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>VTX-7522 (NGDP)</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>Elastomag 170</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N990 (MT Black)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Process aid</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ca(OH)2 HP-XL</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total phr lab</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139.8</td>
<td>139.8</td>
</tr>
</tbody>
</table>

MDR @ 177°C, 0.5 Degree Arc, 100 Range, 12 Minute Clock

- M-L (dNm) | 1.7 | 1.9 | 1.3 | 1.2 |
- ts-2 (min) | 1.1 | 1.1 | 0.9 | 1.1 |
- t50 (min) | 1.4 | 1.4 | 1.1 | 1.3 |
- t90 (min) | 2.1 | 2.1 | 1.8 | 1.9 |
- M-H (dNm) | 32.1 | 30.6 | 29.5 | 27.3 |

Physical Properties @ R.T. - Original (Cure 7' @ 177°C, PC 16 hrs @ 232°C)

- M-100, MPa | 6.3 | 6.2 | 8.0 | 6.7 |
- Tensile, MPa | 13.0 | 14.4 | 13.4 | 14.0 |
- (Tb, psi) | 1878 | 2092 | 1937 | 2026 |
- Elongation, % | 204 | 229 | 163 | 187 |
- Hardness, A, pts | 76 | 76 | 77 | 76 |

Compression Set, 336 hrs @ 200°C, Method B , O-Rings

- PC, 4 hr @ 250°C | 32 | 32 | - | - |
- PC, 18 hr @ 232°C | 30 | 29 | 45 | 36 |

- NGDP triangle precompounds can be blended with one another to replicate the nominal viscosity & cure characteristics of current commercial precompounds.

- In this example
 1. A NGDP blend for compression molding like A401C
 2. A second NGDP blend is made for injection molding like VTR-9160
NGDP: Increased Productivity
Through Broader Operating Window

<table>
<thead>
<tr>
<th>Starting Pcmpd Mooney @ 121°C</th>
<th>~20 Mooney Pcmpd</th>
<th>~35 Mooney Pcmpds</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGDP pcmpd blend</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>Current technology VTR-9160</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>NGDP blend</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Full compound Mooney after black and metal oxides added</td>
<td>31</td>
<td>71</td>
</tr>
<tr>
<td>Mooney viscosity rise when compounded</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>36</td>
</tr>
</tbody>
</table>

In a 35 Mooney viscosity (MV) precompound comparison, a NGDP black loaded compound shows a 16 point lower Mooney viscosity rise than current standard Viton® VTR-9160

Benefits:
- Option to reduce process aid levels -> further improved compression set resistance
- Option to increase filler levels and reduce curative level while maintaining equal final viscosity, compression set resistance, and hardness
- *Injection molding flow improved – NEXT SLIDE*
NGDP: Increased Productivity Through Better Injection Molding (IM) Flow

Benefits:
- faster IM fill times - shorter cycle times
- option to use more cavities tool at a given press tonnage
- option to use smaller runners resulting in less scrap

- 35 Mooney NGDP PC blend shows superior flow by filling the mold much faster than current standard 35 Mooney VTR-9160
- 20 Mooney NGDP PC blend can lower mold fill times even further, or can be injected at lower pressures
Lab data confirms: Excellent Injection Molding (IM) Flow of NGDP Precompounds

40 cavity D-214 O-ring, injection molding

- Same precompound viscosity
- Lower compound viscosity with NGDP
NGDP: Increased Productivity Through Fast Cure Rates

Compounds
identical BpAF and accelerator = to standard A-type Viton® VTR-9129 recipe 30phr N990 black

<table>
<thead>
<tr>
<th>Compounds</th>
<th>6 Ca(OH)2, 3 MgO</th>
<th>9 MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>177 C</td>
<td>NGDP</td>
<td>Standard</td>
</tr>
<tr>
<td>Torque (dN-m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (min)</td>
<td>0 1 2 3 4 5 6</td>
<td>0 1 2 3 4 5 6</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t95 (min)</td>
<td>3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>MH (dN-m)</td>
<td>30.3</td>
<td>30.2</td>
</tr>
<tr>
<td>NGDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t95 (min)</td>
<td>2.5</td>
<td>3.8</td>
</tr>
<tr>
<td>MH (dN-m)</td>
<td>30.2</td>
<td>22.9</td>
</tr>
</tbody>
</table>

Benefits
- Shorter mold closed time \(\rightarrow\) shorter cycle times
Lab data confirms: Faster Cure Rates for NGDP Precompounds

Benefits
- Lower accelerator levels reduce gas generation that can lead to dieseling or voids -> higher quality parts -> less scrap
- Reduced gas generation also permits higher mold temperature for faster cycles

NGDP gums cure faster than current standard Viton®

Example: 70 Mooney NDGP precompound made with VTX-7620 gum has similar cure rate as A-601C with 12% less accelerator!
Lab Data Demonstrates: Operating Flexibility Provides Increased Productivity ...

40 cavity D-214 O-ring, injection molding

- Injection time to fill in a 40 cavity D-214 o-ring mold
- Even with 45% process aids of the standard Viton®, NGDP flow is better
- Less process aids for better end use properties with no processing compromise
- With lower levels of process aids, NGDP flows better than standard Viton®....
... AND Improved Performance

Compression set of injection moulded D-214 o-rings (200 °C / 70 Hr)

- NGDP allows shorter post cure times to develop the same compression set of standard Viton® post cured with much longer cycles

- … for further better compression set & less surface defects like welding lines
… while maintaining excellent release properties
% of self release at steady state

- NGDP 1.10 phr
- NGDP, 0.90 phr
- NGDP, 0.70 phr
- NGDP, 0.50 phr
- Standard, 1.10 phr

% self release
NGDP: Improved Performance
Through Excellent Compression Set

Benefits:
• Option for short post cure cycle resulting in faster production cycles
• High quality sealing
• Meet demanding end users specifications

30-35 Mooney injection molding stocks

40-60 Mooney compression molding stocks

• 336 hr comp set of low Mooney NGDP blend with process aids is improved – 10% better than current VTR-9160 & VTR-9180
• High Mooney NGDP comp set best in class. Low C/S with 4 hr PC
NGDP: Improved Performance
Through Excellent Sealing Property

Stress relaxation @ 175°C, air

% retained sealing force

hours

A601C Control
VTR-7621
VTR-7622
VTX-7623
VTX-7624
A201C
NGDP: Lab Data Confirms Good Low Temperature Performance

Benefits:
• Equivalent or slightly better low temperature sealing

• NGDP does not compromise low temperature Glass Transition (Tg) and TR-10 properties. Same to slight improvement
NGDP: Lab Data Confirms Good Physical Properties

<table>
<thead>
<tr>
<th>Descr.</th>
<th>NGDP precompounds</th>
<th>Stand. A201C control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VTR-7621</td>
<td>VTR-7622</td>
</tr>
<tr>
<td>Viton® A 601C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VTR-7621</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>VTR-7622</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>VTX-7624</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Viton® A 201C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ELASTOMAG 170</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>N990</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Ca(OH)2 HP-XL</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Physical Properties @ R.T. - Original (Cure 7' @ 177°C, Postcure 4 hrs @ 250°C)

<table>
<thead>
<tr>
<th></th>
<th>M-25, MPa</th>
<th>M-100, MPa</th>
<th>Tensile, MPa</th>
<th>Elongation , %</th>
<th>Hardness, A, pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR-7621</td>
<td>2.0</td>
<td>6.4</td>
<td>14.2</td>
<td>218</td>
<td>75</td>
</tr>
<tr>
<td>VTR-7622</td>
<td>2.1</td>
<td>5.2</td>
<td>13.4</td>
<td>231</td>
<td>80</td>
</tr>
<tr>
<td>VTX-7624</td>
<td>1.9</td>
<td>5.1</td>
<td>13.1</td>
<td>216</td>
<td>74</td>
</tr>
<tr>
<td>A201C</td>
<td>2.3</td>
<td>6.3</td>
<td>14.3</td>
<td>215</td>
<td>76</td>
</tr>
</tbody>
</table>

Physical Properties @ R.T. - Original (Cure 7' @ 177°C, Postcure 16 hrs @ 232°C)

<table>
<thead>
<tr>
<th></th>
<th>M-25, MPa</th>
<th>M-100, MPa</th>
<th>Tensile, MPa</th>
<th>Elongation , %</th>
<th>Hardness, A, pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR-7621</td>
<td>2.2</td>
<td>6.6</td>
<td>14.8</td>
<td>220</td>
<td>76</td>
</tr>
<tr>
<td>VTR-7622</td>
<td>2.3</td>
<td>5.6</td>
<td>13.5</td>
<td>231</td>
<td>80</td>
</tr>
<tr>
<td>VTX-7624</td>
<td>2.0</td>
<td>5.2</td>
<td>12.9</td>
<td>214</td>
<td>79</td>
</tr>
<tr>
<td>A201C</td>
<td>2.2</td>
<td>6.0</td>
<td>13.3</td>
<td>208</td>
<td>75</td>
</tr>
</tbody>
</table>

Compression Set , Method B , O-Rings

<table>
<thead>
<tr>
<th></th>
<th>70 Hrs @ 200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- PC, 4 hr @ 250°C</td>
</tr>
<tr>
<td></td>
<td>- PC, 16 hr @ 232°C</td>
</tr>
</tbody>
</table>

Volume swell - % increase , 7700 Fluid , 70 hr @ 200°C , %

<table>
<thead>
<tr>
<th></th>
<th>70 Hrs @ 200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- PC1, 4 hr @ 250°C</td>
</tr>
<tr>
<td></td>
<td>- PC2, 16 hr @ 232°C</td>
</tr>
</tbody>
</table>

- NGDP O-ring precompounds are formulated like standard 66%F bisphenol curable FKM – like Viton® A201C run as a control in the table to the left
- NGDP shows similar tensile and elongation to A201C
- Physicals & compression set are good with a short 4 hr postcure and optimal with a 16 hr PC
- Fluids resistance to 7700 fluid is similar to A201C
Product Offer - NGDP Availability

- VTX-7619 & 7620 gums available now
 - Can be compounded with VC50/VC30
 - Can be blended with precompounds

- **precompounds forming NGDP triangle available**
 - 60 Mooney – standard cure rate **VTR-7621**
 - 20 Mooney – standard cure rate **VTR-7622**
 - 20 Mooney – slower cure rate **VTX-7624**

- **Other precompounds developed**
 - 35 Mooney oil seal precompound (for bonded parts) – **VTX-7625**

- **Sampling quantities available in 2Q 2010**
Key Messages for NGDP

• increased productivity
 • shorter injection molding fill times
 • faster cure rates leading to shorter cycle times
 • shorter post cure times
 • Lower process aid levels leading to higher quality yield (fewer parts with defects like flowmarks or knitlines)

• enhanced part performance
 • through better compression set resistance

• additional flexibility with available gums and precompounds
 • through blend options within in the precompound triangle to develop customized formulas for specific applications
The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable and falls within the normal range of properties. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.

Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont customer service representative and read Medical Caution Statement H-50103-3.

Copyright© 2010 DuPont™. The DuPont Oval logo, DuPont™, The miracles of science™, DuPont™ Viton® are registered trademarks of E.I. du Pont de Nemours or its affiliates. All rights reserved.